Contents

Title 1
1 - Safety Rules and Regulations 2
2 - Introduction to Engineering 4
3 - Meeting and Greeting 9
4 - Numbers 12
5 - Programming 16
6 - Tools 21
7 - Shapes and Dimensions 25
8 - Schematic Symbols 29
9 - Components 30
10 - Reading Data Sheets (LM555 timer) 33
Answers Error! Bookmark not defined.
1 - Safety Rules and Regulations Error! Bookmark not defined.
2 - Introduction to Engineering Error! Bookmark not defined.
3 - Meeting and Greeting Error! Bookmark not defined.
4 - Numbers Error! Bookmark not defined.
5 - Programming Error! Bookmark not defined.
6 - Tools Error! Bookmark not defined.
7 - Shapes and Dimensions Error! Bookmark not defined.
8 - Schematic Symbols Error! Bookmark not defined.
9 - Components Error! Bookmark not defined.
10 - Reading Data Sheets (LM555 timer) Error! Bookmark not defined.

1 - Safety Rules and Regulations

Safety Signs

Explain what the following signs mean.
What should you do (or not do)? What precautions should you take?

Warning Signs \begin{tabular}{c}
Mandatory

Signs

\quad

Prohibition

Signs

Hazardous

Substance

Labels

\quad

Emergency

Information
\end{tabular}

In Case of Fire-Alarm

Complete the Fire-Alarm Safety Rules by choosing the best answer. More than one answer may be correct.

1. The complete building will be \qquad .
a) elevated
b) elongated
c) emptied
d) escaped
e) evacuated
2. Close windows and doors - but do not \qquad them.
a) break
b) leave
c) lock
d) shut
e) tighten
3. Guide helpless / disabled people to the \qquad point.
a) assembly
b) collection
c) gathering
d) holding
e) meeting
4. Follow the signed \qquad routes.
a) absence
b) break out
c) escape
d) evacuation
e) get-away
5. Do not __ elevators.
a) consume
b) contain
c) employ
d) use
e) utilize
6. Follow the instructions of the evacuation _ (red safety vests) until the fire service arrives.
a) chiefs
b) controllers
c) coordinators
d) directors
e) managers
7. Go directly to the assembly point - wait for further instructions given by authorized personnel.
a) people
b) personal
c) personnel
d) prospects
e) public
8. Do not leave the grounds of Hochschule Darmstadt with your car. You may \qquad the access roads for the fire service.
a) block
b) check
c) deter
d) impede
e) obstruct

General Safety Rules

9. You may only use safety- \qquad electrical devices
a) checked
b) controlled
c) proved
d) proven
e) tested
10. No serial connection of multiple \qquad
a) connectors
b) outlets
c) plugs
d) power
e) sockets points
11. No tripping \qquad due to electrical installations! (Watch where you place your electrical cords!)
a) deathtraps
b) exposures
c) hazards
d) risks
e) threats

Tool Safety

12. Do not use the power tool if the __ does not turn it on and off.
a) button
b) key
c) lever
d) shelter
e) switch
13. Disconnect the plug from the power source before making any \qquad
a) adjustments
b) arrangements
c) formations
d) shapes
e) variations
14. Perform regular _ on your power tools.
a) care
b) maintenance
c) safety
d) upholding
e) upkeep
15. \qquad only with the charger specified by the manufacturer.
a) boost
b) increase
c) recharge
d) restore
e) upload
16. Do not \qquad power tools or battery packs in household waste
a) discard
b) dispose of
c) eliminate
d) remove
e) throw away

2 - Introduction to Engineering

WRITE DOWN THREE REASONS WHY YOU HAVE CHOSEN TO STUDY ELECTRICAL ENGINEERING
1.
2.
3.

DISCUSS WITH YOUR NEIGHBOUR THE ABOVE REASONS, ADD HIS or HERS AND WRITE THEM DOWN
4.
5.
6.

WHAT SKILLS OR ABILITIES DO ELECTRICAL ENGINEERS NEED?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

WHERE DO YOU SEE YOURSELF WORKING AFTER GRADUATION AND WHAT DO YOU SEE YOURSELF DOING?

What do electrical engineers do?

Electrical engineers design, develop, test and supervise the manufacturing of electrical equipment, such as electric motors, radar and navigation systems, communications systems and develop electronic equipment, such as broadcast and communications systems - from portable music players to global positioning systems (GPS). They study and apply the physics and mathematics of electricity, electromagnetism and electronics to both large and small scale systems to process information and transmit energy. They work with all kinds of electronic devices, from the smallest pocket devices to large supercomputers.

Which industries can electrical engineers work in?

Electrical engineers are usually concerned with large-scale electrical systems such as motor control and power transmission, as well as utilizing electricity to transmit energy. Electrical engineers may work on a diverse range of technologies, from the design of household appliances, lighting and wiring of buildings, telecommunication systems, electrical power stations and satellite communications. Another emerging field for electrical engineers is microelectronics - the design and development of electrical systems and circuits in computers and mobile devices.

What are some real-life electrical engineering designs?

A few examples of the applications and reach of electrical engineering include:
The computer, tablet or smartphone you purchased recently is a masterpiece of electrical engineering design.

Robots are comprised of sensors, actuators, microprocessors and sophisticated feedback control systems, designed by electrical engineers!

Space projects - deep space communications, robust control systems, extra-terrestrial GPS for navigation and positioning, power generation and storage networks, imaging systems - made possible by electrical engineers.

Sophisticated medical technology that you come across in a modern hospital including CT, MRI and PET imaging machines, ECG and blood pressure monitors, all based off electrical engineering principles.

If it's a practical, real-world device that produces, conducts or uses electricity, in all likelihood, it was designed by an electrical engineer. Additionally, engineers may conduct or write the specifications for destructive or nondestructive testing of the performance, reliability and longterm durability of devices and components.

Exercise 1

What do the following words mean in English? Find equivalent words in the previous text.

1. entwerfen
2. entwickeln
3. prüfen
4. kontrollieren \qquad
5. Herstellung \qquad
6. Stromerzeugung \qquad
7. untersuchen
8. anwenden
9. Rundfunksendung \qquad
10. verarbeiten
11. übertragen
12. Gerät
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 2

What is the difference between the following words? Give some examples of each.

1. Device
2. System
3. Appliance
4. Station
5. Equipment

Exercise 3 - Devices and their Functions:

Find words in the text (lines $21-36$) that have the same meaning:

1. \qquad uses
2. \qquad encounter
3. \qquad bought
4. \qquad requirements
5. \qquad consist of
6. \qquad functionality
7. \qquad response
8. \qquad dependability
9. \qquad tough/sturdy
10. \qquad toughness/sturdiness

Exercise 3 - Discussion

1. Can you think of any other skills you might need when you start your engineering career?
2. Which subject / lessons do you think will benefit you the most during your career as an engineer? Why?
3. What courses / subjects do you think are missing from your studies? Which topics should be given more emphasis and which should be given less?

Fields of Engineering

How many different Engineering Fields can you name? Can you name at least 10 (including your own field of study)?

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad

10. \qquad

Engineers Tasks

Complete the text below. The first letter has been given.

1. All engineers share certain t \qquad and

r

 .This often includes $\underline{\mathrm{d}}$new devices. They \underline{a} \qquad a problem to see how a device might
help \underline{S} the problem. Often they design or redesign a device to conform to the \underline{r} \qquad at hand. Then they create/draw up the

S so the device can be built. Next, they have to develop a
p of the device. They then test this device to

V \qquad performance and functionality.
2. Electrical Engineers specialize in power \underline{S} and
g \qquad . They also design, develop, t \qquad and \underline{S} \qquad systems, circuits,
and devices used in communication, computer and entertainment S health care i \qquad , and
automated control systems

Word Formation

Add the appropriate form of the words below

3 - Meeting and Greeting

During your career as an engineer, you will be required to introduce yourself and others when meeting other people. This can take place during trade fairs, meetings, conferences, sales visits or during many other occasions. During these times, you will want to make the best impression possible. Therefore, it is very important to note a few simple rules.

Saying hello

When you meet someone in a FORMAL situation FOR THE FIRST TIME - you say "how do you do?". If you have already met this person, you can say "how are you doing?". In INFORMAL situations,
 you can say "how are you?" whether you already know the person or not. Remember: the answer to these questions is "fine". "How are you", "how are you doing", "how do you do" are not real questions about your health. Rather, these are just polite ways of introducing yourself or saying hello.

Asking about someone's job

If you want to know about someone's profession or position, you can ask them "what do you do?". You can also ask "what do you do for a living?" If you want to know where someone has a job, you can ask "where do you work?" or "who do you work for?". There are many ways you can answer this question. If you want to say the name of your company, you can say "I work for [your company]" or "I am employed at [your company]". If you want to say your location, you can say "I work in [your city]" or "I work at [location]". Don't ask someone "what are you doing?" unless you are curious about the activity they are currently doing. "What do you do?" refers to asking about someone’s job.

Talking about yourself

Often, you will be required to talk about current projects you are working on or about your past experiences. Perhaps you did an internship that
 is relevant to the situation. Possibly you did an apprenticeship which gives you specific specialized knowledge of the topic being discussed. It is also possible that you had training in a specialized area or did/took a course giving you certain background information relevant to the situation. In addition, you can refer to any subjects you are certified in / have certification in. You need to know how to express this in a professional manner. When talking about your current position / duties (i.e. tasks), you can explain what you are responsible for or what you are in charge of. You can indicate any projects, activities or departments that you run or are the head of. You can also mention what you position involves (involve + VERB + "ing" e.g. "my job involves writing many status reports and calculating future costs.)
You may need to explain to someone what you majored (main courses of study) and minored (secondary courses of study) in during your university studies. It is also sometimes important to say where you studied / did your studies.

Exercises

Exercise 1

You are attending a conference with your boss. You are in a small group having a conversation during one of the breaks. Answer the following questions according to the situation given:

1. Your boss introduces you to another guest, Mr. Marshal. You have never personally met Mr. Marshal, but you know who he is. You shake hands with Mr. Marshal and say ..
a) How are you doing?
b) How do you do?
c) What are you doing?
d) What do you do?
2. A second guest, Mrs. Johnson, joins your boss and Mr. Marshal. You have met Mrs. Johnson several times in the past. You shake hands with Mrs. Johnson and say ...
a) How are you doing?
b) How do you do?
c) What are you doing?
d) What do you do?
3. You would like a little more information about Mr. Marshal's position in his company. You ask him ...
a) How are you doing?
b) How do you do?
c) What are you doing?
d) What do you do?
4. Mr. Marshal says that he is an engineer. You tell Mr. Marshal ...
a) I am also an engineer.
b) I am also engineer.
c) I am an engineer, too.
d) I am engineer, too.
5. Mr. Marshal mentioned the name of his company, but you didn't understand. You say ...
a) For what
b) For which company do you work?
c) What company do you work for?
d) Which company do you work for?
6. Mrs. Johnson did an internship at Mr. Marshal's company. She tells him ...
a) I jobbed at your company.
b) I worked at your company.
c) I made an internship at your company.
d) I did a training at your company.
7. Mr. Marshal wants to know the name of Mrs. Johnson's supervisor when she was at his company. He asks her ...
a) Who did you work at?
b) Who did you work for?
c) Who did you work over?
d) Who did you work with?
8. You notice that Mr. Marshal has a little accent. You want to know his nationality. You ask him
a) What is your accent?
b) Where are you from?
c) Where do you
come from?
d) Where were you from?

Exercise 2

Add the correct preposition, if needed, to complete these sentences. Sometimes more than one answer is possible.

1. I want to work \qquad Siemens after I graduate.
2. He works \qquad the Chemnitz factory.
3. She works \qquad the marketing department.
4. He's responsible \qquad the Chinese project.
5. My job involves \qquad documenting the progress of the engineers.
6. She often works \qquad foreign engineers.

Exercise 3 - Discussion

1. Is being "trained" and "certified" the same thing?
2. What is the difference between a trade fair, a conference, a meeting, and a social mixer?
3. How many ways can you say verantwortlich für in English?
4. What is the difference between an internship and an apprenticeship?

Exercise 4

Find words in the text that have the following definitions:

1. \qquad an exhibition at which businesses in a particular industry promote their products and services
2. \qquad a gathering of two or more people to discuss ideas, goals and objectives that concern the workplace, often to make important decisions regarding the organization
3. \qquad an event, sometimes lasting a few days, at which there is a group of talks on a particular subject
4. \qquad a meeting in which especially business matters are discussed formally
5. \qquad face-to-face meeting between a salesperson and a customer or prospect for the purpose of generating a sale, usually prearranged

Exercise 5

Prepare a short presentation. Give information about yourself in regards to the following topics. Respond using the 6Ws (who, what, when, where, why \& how):

1. an apprenticeship
2. special or interesting hobby
3. an internship
4. special certification
5. special or interesting course

4 - Numbers

Numbers are an essential part of an engineer's job. You will need them when measuring (i.e. how long, how far, how much), counting (i.e. how many) or labeling (i.e. equipment number, ISBN). It is important that you know how to use them in English.

Mathematics

Elementary arithmetic is expressed with addition, subtraction, multiplication and division:

NOTE: In some countries, division is expressed with another symbol (i.e. 3:2).
However, in English this represents a ratio (i.e. 3:2 - a ratio of 3 to 2)
Equality (or inequality) can be expressed in different ways in English. Here are some of the most common examples:

$x=y$	x equals y	$x<y$	x is less than y
$x \neq y$	x is equal to y	$x \leq y$	x is less than or equal to y
	x is not equal to y	$x>y$	x is greater than y
	$x \geq y$	x is greater than or equal to y	

$$
x \approx y \quad x \text { is approximately equal to } y
$$

Scientific notation

Some numbers are so large or small that we use a special method of expressing these. Numbers such as 3×10^{8} are known as scientific notation. The 8 in 10^{8} is known as the exponent. The 10 is the base.

- The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. (three times ten to the power of eight)
- 12 grams of carbon contains approximately 6.023×10^{23} carbon atoms
(six point zero two three times ten to the power of twenty-three)

Mathematical Symbols

Some common mathematical symbols and how to say them:

x^{2}	x-squared		the square root of y	\%	Percentage
x^{3}	x-cubed	$\sqrt[3]{y}$	cubed root of y	π	pi (pronounced [pai])
	x to the $3^{\text {rd }}$ power	$\sqrt[4]{y}$	$4^{\text {th }}$ root of y	∞	infinity / infinite
	x to the power of 3	\sqrt{y}		Σ	summation / the sum
x^{4}	x to the $4^{\text {th }}$ power				of ...
	x to the power of 4				
x^{-4}	x to the negative $4^{\text {th }}$ power				
	x to the power of negative				
	4				

Written numbers

When writing, we spell out the numbers below 10. Larger numbers are denoted with their digits.

- Please send us four samples.
- The delay is due to two machines malfunctioning simultaneously.
- We had 21 applicants for the internship position.

However, always use the number for dates, ages, monetary amounts, percentages, and ratios.

- 8 June
- 21 years old
- \$129.99
- 14\%
- 3:2

The use of commas and decimals are the opposite as in some countries (i.e. Germany)

- 1,400
one thousand four hundred
- 1.400
one point four zero zero

Spoken numbers

When speaking, you can say 'one' or 'a' when using large numbers.

- 100 one hundred / a hundred

The use of 'and' is also optional.

- 123 one hundred twenty-three (AmEng)
- 123 one hundred AND twenty-three (BrEng)
- 1000 one thousand / a thousand

When using decimals, read each number AFTER the decimal individually.

- $\pi=3.14195$ (three POINT one four one nine 5)

Ordinal numbers

When referring to an ordered arrangement or a position in a list, we use ordinal numbers. Most ordinal numbers end with "th" - but not all.

- first $1^{\text {st }}$
- second $2^{\text {nd }}$ - fifth $5^{\text {th }}$
- twenty-first $21^{\text {st }}$
- twenty-second $22^{\text {nd }}$
- ninety-ninth $99^{\text {th }}$
-third $3^{\text {rd }}$
- twenty-fifth $25^{\text {th }}$

Currency

Currency symbols come BEFORE the number in English
-\$ 12.00

- $¥ 8000$
- € 24.95
- £ 19.99

Percentages / Fractions

There are many ways we can refer to parts or partial section of an amount. We commonly use either percentage or fractions, although other ways are possible, too.

- One out of 10 products off the assembly line was defective.
- 12% of the inventory was returned.
- We were able to repair $3 / 4$ (three-fourths, three quarters) of the machines.
- We had to throw out $1 / 4$ (a fourth, a quarter) of merchandise.

Common abbreviations

We often use abbreviations for common expressions

- Contamination levels have risen to 1000 ppm (parts per million)
- The speed limit on most sections of the Autobahn is $120 \mathrm{~km} / \mathrm{h}$ (kilometers per hour).
- The official highest recorded temperature is $56.7^{\circ} \mathrm{C}$ (degrees Celsius). It was measured on 10 July 1913 at Greenland Ranch, Death Valley, California, USA.
- The device takes 12.5 V (volts).

Miscellaneous mathematical expressions

Here are some miscellaneous mathematical expressions which might be useful to you as an engineer:

$$
\begin{array}{lll}
\text { sine } \theta & \text { cosine } \theta & \text { tangent } \theta \\
=\frac{\text { opposite }}{\text { hypotenuse }} & =\frac{\text { adjacent }}{\text { hypotenuse }} & =\frac{\text { opposite }}{\text { adjacent }}
\end{array}
$$

The sine of angle ϑ is equal to the opposite divided by the hypotenuse

$$
\begin{array}{ll}
\int_{a}^{b} f(x) d x . & \begin{array}{l}
\text { the integral of } a \text { to } b \text { of } \\
\text { even numbers }
\end{array} \\
f \text { of } x d x \\
\text { odd numbers } & 2,4,6,8, \ldots \\
\text { prime numbers } & 1,3,5,7, \ldots \\
2,3,5,7,11, \ldots
\end{array}
$$

Exercises

Exercise 1

How do you say the following numbers?

1. 10,234 \qquad 6. 10,000
2. 10.234 \qquad 7. 100,000 \qquad
3. 1000 \qquad 8. 1,000,000 \qquad
4. 1,000,000,000 \qquad
5. 1,000,000,000,000 \qquad

Exercise 2

How do you say the following?

1. $1+1$
2. $2-1$ \qquad
\qquad
3. 3×1
4. $5 \div 2$
5. $5: 2$
6. $x=y$

Exercise 3

What are the English expressions for the following?

1. Zahl \qquad 2. Ziffer
2. gerade \qquad 4. ungerade \qquad
3. Sinus \qquad 6. Cosinus \qquad

Exercise 4

What are the following symbols?

1) x^{2}
2) \%
3) x^{3}
4) π
5) ∞
6) \sum
\qquad

Exercise 5

Circle the correct answer.

1. a^{3}
a) a-3 $3^{\text {rd }}$-power
b) a-cube
c) a-cubed
d) a-high-3
e) a-power-3
2. $A B \neq C D$
a) $A B$ does not equal CD
b) $A B$ equals not $C D$
c) $A B$ is not equal CD
d) $A B$ is unequal $C D$
e) $A B$ not the same as CD
3. 24×6
a) twenty-four multiplicated by six
c) twenty-four multiplied
e) twenty-four time six
d) twenty-four multiplied
f) twenty-four times by six
b) twenty-four multiplicated with six
4. $A \geq B$
a) A is greater than and equal B
c) A is greater than or equal B
e) A is greater then and equal B
g) A is greater then or equal B
b) A is greater than and equal to B
d) A is greater than or equal to B
f) A is greater then and equal to B
h) A is greater then or equal to B
5. $1 / 3+2 / 3=1$
a) one-third plus two-third equal one
c) one-third plus two-thirds equal one
e) one-thirds plus two-thirds equal one
f) one-thirds plus two-thirds equals one
6. eight billion dollars
a) $8.000 .000 \$$
e) $8.000 .000 .000 \$$
i) 8.000.000.000.000 \$
m) 8.000.000.000.000.000 \$
b) $8,000,000 \$$
f) $8,000,000,000 \$$
j) $8,000,000,000,000, \$$
n) $8,000,000,000,000,000 \$$
c) $\$ 8.000 .000$
g) $\$ 8.000 .000 .000$
k) $\$ 8.000 .000 .000 .000$
o) \$8.000.000.000.000.000
d) $\$ 8,000,000$
h) $\$ 8,000,000,000$
l) $\$ 8,000,000,000,000$
p) $\$ 8,000,000,000,000,000$

Exercise 6

Which box is needed to balance the scale? You may only add one box.
Bonus: can you give a weight to each box? (Hint: one of the boxes weighs 3 kilograms)

5 - Programming

Computers do what they are told, and their instructions come in the form of programs written by humans. This is known as programming or coding and this is done using a programming language. Often, the source code to these programs can be read by humans but not by computers. In these cases, it is said that source code is compiled. This means it is "translated" into machine code which the computer can understand. Some programs are not compiled, but rather interpreted. This means that it is composed on the computer while it is running. Such programs are often known as scripts.

Functions

A computer program implements the steps to carrying out its task. These steps are called algorithms. An algorithm is a step by step method of solving a problem. It is commonly used for data processing, calculation and other related computer and mathematical operations. An algorithm is also used to manipulate data in various ways, such as inserting a new data item, searching for a particular item or sorting an item.
If certain algorithms are used repeatedly or in different tasks, they can be implemented in a function or method. Functions are a way of grouping algorithms so that you can readily call them to compute a result. A function has three parts: a name, parameters, and a body. The body is the block code which performs the calculations (i.e. the algorithm). Parameters are variables that exists only in the scope of the function (while the function is being used). Functions or methods generally need parameters in order complete their task correctly. The name of a function is used to call that function (i.e. the code within the function). Functions are often used to return a value, using a return statement. Functions that do not return a value are referred to as void.

Data Types

Fundamentally, computers manipulate numbers, or more precisely $0 s$ and 1 s . These binary numbers are then "translated" into the decimal numbers, which we use and understand. However, not all numbers are created equally. To be useful, these numbers need to be of special data types.
Boolean these are binary numbers. They can only be 0 or 1 . This often corresponds to "true"/"false", "on"/"off", or "active"/"inactive".
Integers these are commonly referred to as "counting numbers". They are whole numbers (not a fractional number). Integers can be signed (positive, negative or zero) or unsigned (only positive or zero). Unsigned integers can reach a higher value (dependent on memory space reserved for such numbers).Examples of integers are: -5, 1, 5, 8, 97, and 3,043
Float/double these are numbers with decimal parts. Whether they are referred to as double or float depends on how precise the decimal must be and on the programming language. Generally, double is more precise, thus needs more memory, than float.
Char or character - these are letters represented by certain numerical values. They are used to make the computing experience easier. One of the most famous encoding systems is ASCII (American Standard Code for Information Interchange). ASCII codes represent text in computers, telecommunications equipment, and other devices. Most modern character-encoding schemes are based on ASCII, although they support many additional characters.

The data types explained above are known as the elementary, primary or basic data types. We can build more complex data types from these basic data types. A list is a number of items in an ordered or unordered structure. Items in a list can be stored, added/inserted or deleted. An array is similar to a list, but has some advantages. Arrays allow both direct and sequential access; lists only allow sequential access. Arrays can also be multi-dimensional (i.e. an array within an array). A
string is a simple array of characters. This allows the computer to deal with complete words, sentences or even complete texts.

Variables

Programming languages use numbers (and text) and allow you to add, delete, edit and manipulate this data as well as storing the data for later retrieval. These numbers and text are called variables. Variables are allocated specific memory locations for easy retrieval. Variables, and constants, can be given a name chosen by the programmer to make it easier to remember the purpose of the variable (i.e. "High Score"). The value of a variable can be altered. The value of a constant cannot.

Operators

Variables are useless unless you can do something with them, such as adding or multiplying their values. Processing variables is known as an operation.
We use parenthesis in programming languages to control the order of operation. Parenthesis can also be nested (i.e. one set of parenthesis (within another set of parenthesis)). Which type of parenthesis you require depends on the syntax of the programming language. You may need basic parenthesis (), square brackets [], or

Basic Operators:

+ addition
- subtraction
* multiplication
/ division
braces \{ \}. The first parenthesis or bracket in a set is referred to as the opening parenthesis; the end parenthesis is referred to as closing parenthesis.

Conditions:

Conditional statements are commonly called if-statements. A condition is specified by a set of boolean expressions which are evaluted to a value of true or false. An if statement executes a block of code if the condition is true. An if else statement runs different block of code depending on whether the condition is met or not. If execution of a block of code depends on a series of conditions, then multiple if-statements

	Relational Operators
	In conditional statements
$==$	equal to
$!=$	not equal to
$>$	greater than
$<$	less than
$>=$	greater than or equal to
$<=$	less than or equal to

Relational Operators In conditional statements
$==$ equal to
!= not equal to
> greater than
< less than
$>=$ greater than or equal to
<= less than or equal to are used. This can be an if-else-if ladder or a nested if-else statement. However, it is often recommended to use a switch statement rather than multiple nested if-else statements. Multiple conditions are often stated using Boolean algebra (\&\& (AND), II (OR), ! (NOT)).

Loops

Loops are a fundamental construct for many programs. The purpose of loops is to repeat the same, or similar, code a number of times. All loops allow you to initiate a counter (or index) variable, a check condition, and a way to increment your counter.
Most programming languages have versions of the following loops:

For-loops
 While-loops
 Do...while-loops

For-loops are used when we know how many times the block of code should be executed. Whileloops are used in situations where we do not know how many times (or iterations) the loop needs to be executed beforehand. Do...while-loops are used when we do not know how many iterations are necessary, but the block of code should be executed at least once.

Functions

A computer program implements the steps to carrying out its task. These steps are called algorithms. An algorithm is a step by step method of solving a problem. It is commonly used for data processing, calculation and other related computer and mathematical operations. An algorithm is also used to manipulate data in various ways, such as inserting a new data item, searching for a particular item or sorting an item.

If certain algorithms are used repeatedly or

```
Examples of loops:
for loop
for (int i=0; i<100; i++)
{ //executed until i >= 100 }
while loop
while (condition)
{ //executed after condition checked }
do...while loop
do
{ // executed at least once }
    while (condition);
``` in different tasks, they can be implemented in a function or method. Functions are a way of grouping algorithms so that you can readily call them to compute a result. A function has three parts: a name, parameters, and a body. The body is the block code which performs the calculations (i.e. the algorithm). Parameters are variables that exists only in the scope of the function (while the function is being used). Functions or methods generally need parameters in order complete their task correctly. The name of a function is used to call that function (i.e. the code within the function). Functions are often used to return a value, using a return statement. Functions that do not return a value are referred to as void.

\section*{Punctuations/Symbols}

In most source code, you will generally find different punctuation marks depending on the programming language. Common punctuation marks include comma (,), semi-colon(;), colon(:), braces (\{\}), brackets (B.Eng) / parenthesis (AmEng) (()), square brackets ([]), quotation marks (" "), pipe (|), slash (/), back slash (\(\backslash\)) period (.), question mark (?), caret(^) and percentage (\%).

\section*{Exercise 1}

Find a word that has the same meaning as the definitions below:
1. \(\qquad\) a text listing of commands to be compiled or assembled into an executable computer program
2. \(\qquad\) carrying out of operations on data, especially by a computer, to retrieve, transform, or classify information
3. \(\qquad\) collection of instructions that performs a specific task when executed computer programming language consisting of binary or hexadecimal instructions which a computer can respond to directly
direct execution of source code without compiling it beforehand implementation
process of converting source code into a form in which the program can be executed
8. \(\qquad\)

\section*{Exercise 2}

Use the words below to complete the text. Sometimes more than one word can go in the blank. All the words should be used.
\begin{tabular}{|lllll|}
\hline\(\bullet\) call & \(\bullet\) edit & \(\bullet\) insert & \(\bullet\) script & \(\bullet\) sort \\
\(\bullet\) delete & \(\bullet\) execute & \(\bullet\) remove & \(\bullet\) search & \(\bullet\) store \\
\hline
\end{tabular}

Databases are a user-friendly form of data processing. For example, it is easy to keep up to date and \(\qquad\) (change or make corrections) a mailing list. If you have a new customer, it is a simple process to ADD a new contact. You would go to the correct field and the new information. If some of the contacts are no longer up-to-date, it is a simple matter to \(\qquad\) the outdated elements. However, don't forget to save the changes or you won't \(\qquad\) the new version of the list. When you need to find information about a particular client, you can use the \(\qquad\) function to find this. Oftentimes, the data should be presented in a particular way, such as alphabetical order. The \(\qquad\) function is the command you need for this.

Sometimes tasks that are often performed are automated. The commands would be saved into a
\(\qquad\) as needed.

\section*{Exercise 3}

Examples of different types of data are given below. Explain what each example represents:
1. \(\qquad\) true/false
2. \(\qquad\) \(1,2,3,4,126\) 3.14159
4. \(\qquad\) 'a', 'b', 'c', '1', '2'
5. \(\qquad\) \(1.0,3.5,-1.0,-3.5,0\)
6.
1.0, 2.0, 3.5, 0

\section*{Exercise 4}

Write down the following punctuation / programming symbols:
1. \(\qquad\) back slash
6. \(\qquad\) comma
11. \(\qquad\) question mark
2. \(\qquad\) braces
7. \(\qquad\) parenthesis
12. \(\qquad\) quotation marks
3. \(\qquad\) brackets
8. \(\qquad\) percentage
13. \(\qquad\) semi-colon
4. \(\qquad\) caret
5. \(\qquad\) colon
9.
\(\qquad\) period
14. \(\qquad\) slash
15. \(\qquad\) square brackets

\section*{Exercise 5}

Explain the different parts of each of the following code segments:
1. for (int i=0; i<100; i++)
\{ //executed untili>=100 \}
2. int addition (int a, int b)
\{ int r;
\(r=a+b\);
return r; \}
3.
```

if (n1 >= n2)
{ if (n1 >= n3)
{ largestNumber = n1; }
else
{ largestNumber = n3; }
}
else
{ if (n2 >= n3)
{ largestNumber = n2; }
else
{ largestNumber = n3; }
}
System.out.println("Largest number is " + largestNumber);

```

\section*{6 - Tools}

\section*{Common tools when dealing with electronics}

You are likely to find a variety of tools and other equipment in your shop or at home. Many of these tools will have specific functions for dealing with electricity. You need to know how to utilize such tools and equipment properly.

\section*{Soldering}

Soldering is one of the most fundamental skills needed to dabble in the world of electronics. Soldering (pronounced "soddering") involves a material called solder that melts when heated. The heat comes from a soldering iron. The melted solder cools and forms a bond between two items. A soldering station is often useful because it holds your hot soldering iron and keeps your solder and cleaner for the soldering iron tip organized. Most soldering stations also include a set of helping hands / third hand. A third hand has at least one clamp on it that can hold a component while soldering it. It allows you to you both of your other hands. Many of these
 third hand accessories also come with a magnifying glass. This is very useful for viewing part numbers on small components. Other equipment you might need in a soldering station include solder flux, a solder smoke extractor (filter to keep you from breathing soldering fumes), and a solder vacuum / solder sucker. This is very useful for when you make a mistake while soldering. Solder wick is another tool for correcting soldering mistakes. It is sometimes called solder braid or copper braid and is used to desolder (mop up solder)

\section*{Pliers}

Pliers are another tool which is necessary for electrical engineers. Pliers are very useful for gripping an object firmly. These objects can then be turned, bent, twisted, or otherwise manipulated.
All pliers have handles, pivot points and jaws. The jaw is where you can grip an object. Special pliers may have other components (e.g. blades for cutting, springs for self-opening pliers, etc.).
Needle-nose pliers (long-nose pliers) are often used when dealing with a component's pins. Because of the

\section*{Note:}

Grammatically, pliers and tweezers are plural nouns. This means you must use the plural form when referring to pliers.
- If you want to refer to a single tool, you can say "a pair of pliers".
- When referring to multiple tools, you can say "two pairs of pliers". long shape of the jaws, they can be used for reaching into small areas. Needle-nose pliers often have a cutting edge at the base of the jaws.
Wire strippers are used for stripping (cutting and removing) off the electrical insulation from wires. They leave the conductive wire unharmed.
Crimping pliers are used to attach a connector to a wire. The connector may be used to connect two lengths of wire together or to connect a wire to an electrical terminal. The connection can be temporary or can remain as a permanent electrical joint.
Locking pliers (vise grips) are pliers that can be locked into position when gripping an object. Because they lock into place, you can apply more force (or torque).
Diagonal pliers are special pliers because they are not used to grab anything. Their purpose is to cut wire. This is why they are also called cutting pliers or wire cutters. Electricians often refer to them as dikes.

\section*{Tweezers}

Tweezers are similar to pliers. These are small tools used for picking up objects too small to be easily handled with the human fingers. They are usually lightweight and are especially useful for working with components under a magnifying glass.

\section*{Scopes and Meters}

A multimeter is has three main parts: a display, selection knob and ports. The selection knob allows the technician to set the multimeter to read different things such as current (mA), voltage (V) and resistance \((\Omega)\). Some meters are capable of measuing other units, such as capacitance (F) and frequency (Hz). Measurements are made using probes, which are plugged into the ports on the front of the device.
Oscilloscopes are used for displaying and analyzing the waveform of electronic signals. It is useful for uncovering information like frequency,
 noise, amplitude, or any other characteristic that might vary, fluctuate or otherwise change over time.

\section*{Screwdrivers}

One of the most commonly seen and used tools is the screwdriver. Screwdrivers consist of three parts: the tip, the handle, and the shank.

A screwdriver is used by inserting its tip into the head of the screw and rotating it. The three most common types of screwdrivers are Philips (plus), flat head (minus), and Torx. (Flat head screwdrivers are also sometimes called slot head or standard screwdrivers.) The tip is vital for the proper implementation of this tool. It must fit snuggly (i.e. tightly). If it is too large, it will not grip the screw properly. If it is too small, it can strip the head. To screw something in (or on) or to tighten a screw, rotate the screwdriver clockwise. To unscrew something or loosen a screw, rotate it counterclockwise (BrE anti-clockwise).

\section*{Wrenches / Spanners}

Wrenches (spanners) differ from screwdrivers in that they fit around the fastener whereas screwdrivers fit inside the fastener. Wrenches also use leverage to increase the torque applied to the nut or bolt. Wrenches should also fit snuggly around the nut or bolt. If there is any play, then the fastener can be stripped

Wrenches often come in a set and each wrench has a certain size. If you want to use one wrench for various size nuts, you need an
 adjustable wrench (crescent wrench) or a ratchet (socket wrench). Adjustable wrenches have a screw which allows you to change the size of the head. Ratchets have special bits which attach directly over the head of the nut or bolt. These bits are called sockets

Allen wrenches (hex keys) are a hybrid between screw drivers and
 wrenches. They are inserted INSIDE the fastener (like screwdrivers) but use leverage to apply torque (like wrenches). And it is even possible to buy hex key screwdrivers. Nevertheless, hex keys / Allen wrenches are classified as wrenches.

\section*{Exercise 1}

What are these tools called? Write the name next to the picture.
1

2

3

4

5

6
DTWALT
7
DEWALI

\section*{Exercise 2}
1. Pictures 1-3 are all different types of \(\qquad\) .
2. You use them to \(\qquad\) (lockern) or
\(\qquad\) (festziehen) a \(\qquad\) (Bolzen) or a
\(\qquad\) (Mutter).
3. Generally, these tools are turned \(\qquad\) (im Uhrzeigersinn) to tighten a nut or bolt and \(\qquad\) (gegen den Uhrzeigersinn) to loosen it.

\section*{Exercise 3}

Insert the appropriate words to complete the sentences.
1. In order to \(\qquad\) ("insert") the screw/bolt, turn the screwdriver clockwise.
2. To \(\qquad\) ("remove") the screw/bolt, turn the screwdriver counterclockwise / anti-clockwise.
3. You may \(\qquad\) ("ruin") the threads in the hole or on the screw / bolt if it does not remain at a \(90^{\circ}\) angle.

\section*{Exercise 4}

What are these tools called? Write the name under the picture.

\section*{Exercise 5}
1. There are a total of 5 \(\qquad\) (Zangen) on this worksheet.
2. The primary purpose these are to grip objects \(\qquad\) (fest).
3. The objects can then be \(\qquad\) (verdreht),
\(\qquad\) (verbogen), or otherwise manipulated.
4. The tool in picture 4 (exercise 4) is used to remove the \(\qquad\) (Isolierung) from a wire. This process is known as \(\qquad\) a wire.
5. The tool in picture 5 (exercise 4) is used to \(\qquad\) connectors onto a wire.

These connections can either be \(\qquad\) (lasting only a short time) or
\(\qquad\) (lasting forever).

\section*{Exercise 6 - Discussion}

State whether you agree or disagree with the following statements. Explain your answer.
1. If you are in a hurry, and you are careful, you can use the tip of a knife to loosen/tighten a screw.
2. Save your money when buying screwdrivers. The cheapest screwdrivers functions as well as the most expensive.
3. Safety goggles should be worn when using a screwdriver because the tip can be very sharp and can easily poke out someone's eye.
4. When tightening a screw, you should use all your strength while turning the screw to ensure that the screw is tight.
5. If you don't have a wrench readily available, it is OK to use a pair of pliers.

\section*{7 - Shapes and Dimensions}

\section*{Shapes}

When working on a project, it is often necessary to have detailed descriptions of the design. One of the most common ways of doing this is with technical drawings (schematics or blue-prints).
Objects have forms or shapes referring to their length, width, and height (and sometimes depth). These can be presented in either two or three dimensions.

\section*{2D objects}

Two-dimensional objects are represented as flat shapes. Here are some common shapes seen in 2D representations:

circle

ellipse, oval

square

rectangle

triangle

\section*{Examples:}

Coins are circular; have a circular shape
Planetary orbits are elliptical
Origami paper is square; has a square shape
A4 paper is rectangular; has a rectangular shape
Nacho chips are triangular; have a triangular shape

\section*{3D objects}

Three-dimensional objects are represented with depth or thickness, as they are seen in the real world. Here are some common shapes seen in 3D representations:

cylinder

cone

cube

cuboid
block

pyramid

sphere

\section*{Examples:}

Pipes/hoses are cylindrical; have a cylinder shape
A funnel has a cone shape
Balls are spheres; have a sphere shape
A \(6 \times 4\) Lego block is a cuboid (rectangular block); has a cuboid (rectangular block) shape The Luxor Hotel in Las Vegas has a pyramid shape; is shaped like a pyramid.

\section*{Other common shapes}

Some objects have irregular shapes, yet they are easy to describe.

Hook (S-shape)

Bolt
(U-shape)

Pipe (Y-shape)

Hex key
(T-Shape)

\section*{Dimensions}

Most technical drawings display the projects' dimensions to help an engineer understand how to construct an object. This is especially true for prototypes.
When referring to 2-dimensional objects, the longest dimension is usually referred to as the length. The shorter dimension is referred to as the width. For example, euro pallets have a length of \(1,200 \mathrm{~mm} /\) are \(1,200 \mathrm{~m}\) long. They also have a width of \(800 \mathrm{~mm} /\) are 800 mm wide. We can also say that euro pallets are 1.2 meters by 800 millimeters. Or that euro pallets have a loading area of \(0.96 \mathrm{~m}^{2}\) (or almost one square meter).
Surface refers to the exposed side of an object. No measurement is used. Area refers to the exposed side of the object which is being measured. In our example, the surface of the euro pallet has an area of \(0.96 \mathrm{~m}^{2}\).
When we add in a \(3^{\text {rd }}\) dimension, i.e. the distance measured from the bottom to the top of an object, we usually refer to this as the object's height. For example, the

 height of the euro pallet is 144 mm (it is 144 mm tall). The length and width of the euro pallet mentioned above remain the same. We can also say that the dimensions of euro pallets are \(1,200 \mathrm{~mm}\) by 800 mm by 144 mm .
We refer to depth when talking about how far down something goes. For example, the gap between the deckboards (i.e. the top pieces of wood forming the "deck") of the euro pallet has a depth of 22 \(\mathrm{mm} /\) is 22 mm deep.
Euro pallets also weigh / has a weight approximately 22 kg / euro pallets have a weight of approximately 22 kg . The pallets also have a payload of up to 1000 kg (i.e. they can hold/bear a weight of 1000 kg).

The payload of a euro pallet has enough capacity to hold six 45 -gallon steel drums / barrels. Each barrel has a height of 89 cm and a volume / capacity of 45 gallons (205 liters). (This is equivalent to \(205,000 \mathrm{~cm}^{3}\)). The barrel and lid have a diameter of 60 cm . If you remember your formulas from school, this means the circumference of the lid is approximately 188.5 cm and the area of the lid is roughly \(2,825 \mathrm{~cm}^{2}\). Of course, the radius is 30 cm . When empty, the drum weighs 10 kg .
The siphon drum pump in Figure 3 has a capacity of 8
 strokes/liter. The inlet and outlet hose are comprised of (made of/constructed of) flexible PVC. The inlet hose has an outer diameter of 3.1 cm and a length of 180 cm . This can be increased by 120 cm for a total length of 3 m without affecting performance. The outlet hose has a length of 21 cm . The inlet hose is set into the liquid. The pump should be perpendicular (i.e. at a right angle, at \(90^{\circ}\)) to the liquid. The outlet hose can be horizontal (i.e. parallel to the floor) or vertical.

\section*{Exercise 1}

Complete the following exercises. All measurements are in millimeters.

1. The dimensions of the block are 80 \(\qquad\) 60 \(\qquad\) 40.
2. a) Its \(\qquad\) is 80 .
b) It has a(n) \(\qquad\) of 80 .
c) It is 80 \(\qquad\)
3. a) Its \(\qquad\) is 60 .
b) It has a(n) \(\qquad\) of 60 .
c) It is 60 \(\qquad\)
4. a) Its \(\qquad\) is 40 .
b) It has a(n) \(\qquad\) of 40 .
c) It is 40 \(\qquad\)
12. This figure has a(n) \(\qquad\) shape.
13. It has a(n) \(\qquad\) of 40 .
14. It has a(n) \(\qquad\) of 20.
15. Its \(\qquad\) is 125.6 [\(c=\pi d\)].
16. Its \(\qquad\) is \(1256.6\left[A=\pi r^{2}\right]\)
17. Lines \(A B\) and \(C D\) are \(\qquad\) .
18. Lines EF and GH are \(\qquad\) (senkrecht).
19. These are symbols for a \(\qquad\) .
20. They are \(\qquad\) a 90-degree angle.

10.The entire \(\qquad\) of the block covers an area of 10,950.
11. The figure \(\qquad\) 1,500g.

The figure has a(n) \(\qquad\) of 1.5 kg bottom of the block).
9. The top of the figure, section \(A\), has \(a(n)\)
\(\qquad\) of 2100 .
b) It has a(n) \(\qquad\) of 5 .
c) It is 5 \(\qquad\)
8. The bottom of the ridge is 35
\(\qquad\) (measured from the
the ridge is 10 .
7. a) Its \(\qquad\) is 5 .
6. The \(\qquad\) of the ridge is
60. / The \(\qquad\) of

\section*{Exercise 2}

Fill in the blanks with the appropriate word
1. The Mars Rover Curiosity \(\qquad\) 899 kg .
2. This includes scientific instruments with a
\(\qquad\) of 80 kg
3. The \(\qquad\) of the rover is 2.9 m .
4. It is also 2.7 m \(\qquad\) .

5. It is 2.2 m in \(\qquad\) (from the ground to the top).
6. Curiosity has six wheels. Each wheel has a \(\qquad\) (Durchmesser) of 50 cm.
7. Curiosity is \(\qquad\) (ausgerüstet) with several significant telecommunication modules.
8. The rover can \(\qquad\) (another word meaning function) in temperatures varying between -127 to \(40^{\circ} \mathrm{C}\).
9. The rover has a 2.1 m \(\qquad\) arm.
10. There is a cross-shaped turret with five devices \(\qquad\) (montiert) on the end of the arm.
11. One of these devices is a drill. It can drill a hole up to 5 cm \(\qquad\) (distance into the rock)
12. The turret can rotate 350 \(\qquad\)

\section*{Exercise 3}

Fill in the blanks with the appropriate word. Use the diagram to the right if you need help.
1. Each brick has a \(\qquad\) (Spielraum) of 0.1 mm (the amount a particular dimension is allowed to vary) according to manufacturing guidelines.
2. The classic 2 \(\qquad\) 4. 12 mal
4) brick is the most famous Lego brick.
3. It \(\qquad\) 2.5 g . and
4. has a \(\qquad\) of 31.8 mm .
5. It is also 16 mm \(\qquad\) .

6. The bricks are also 9.6 mm \(\qquad\) - excluding the knobs at the top.
7. These last two dimensions have a \(\qquad\) of 10:6 (the relationship between the sizes when you compare them).
8. This aspect (from \#7) is essential if you want to build a \(\qquad\) (box with equal height/length/width)
9. The \(\qquad\) of the knobs is 1.8 mm (from top to bottom).
10. Its \(\qquad\) is 4.8 mm (Durchmesser).
11. This means that is has a \(\qquad\) (Umfang) of 15.08 mm .

\section*{8 - Schematic Symbols}

\section*{Group 1:}
\(\qquad\)
1)

2) \(\begin{gathered}\text { 2 } \\ \end{gathered}\)

Group 2: \(\qquad\)
1)

2)

3)

Group 3: \(\qquad\)
1)
- Mr
5)

2)
\(\square-\)
3)
\(-\mathrm{fr}^{-}\)

4)
6)

)
7)

Group 4: \(\qquad\)
1)

2)

3) -HF
\(\cdots\)
4)
5)

Group 5: \(\qquad\)
1)

Group 6:
1)

4)
2)

3)
6)

\section*{Group 7:}
1)

2)

3)

4)

5)

Group 8:
1)

6)

3)
4)

5)

7)
8)

\section*{9 - Components}

\section*{Wire}

You may be wondering what there is to say about wire? Well - a lot!
Choose the best answer provided to complete the texts below.

\section*{Exercise 1:}
- close
- insulated
- jacket
- sheath
- core
- isolated
- kern
- short

In electronics, the wire we deal with is \(\qquad\) . This means that there is a metal
\(\qquad\) inside of a rubber or plastic \(\qquad\) . This allows
electricity to flow, but prevents a \(\qquad\) in the wires if they were to touch.

\section*{Exercise 2:}
\begin{tabular}{lllll}
\(\bullet\) - breadboard & \(\bullet\) figure & \(\bullet\) prone & • shape & • solid \\
- circuit board & • plugs & • pure & • socket & • tendency
\end{tabular}

There are basically two types of metal cores.
\(\qquad\) core wire has a single piece of metal
inside the insulation. This type of wire is good for electronic
circuit boards or connecting components together on a \(\qquad\) because it can easily plug into the board's \(\qquad\) . Solid wire keeps its \(\qquad\)
when bent, but it's also more \(\qquad\) to break if flexed too often.

\section*{Exercise 3:}
\begin{tabular}{lllll}
\(\bullet\) elastic & \(\bullet\) fray & \(\bullet\) prototyping & \(\bullet\) snap & \(\bullet\) troubleshooting \\
\(\bullet\) flexible & \(\bullet\) jump & \(\bullet\) sliced & \(\bullet\) stranded & \(\bullet\) wiggle
\end{tabular} core wire consists of thin metal strands bunched together. This wire is better for connecting to components which are handled a lot or move around (such as connecting to motors on a robot arm). This type of wire does not easily plug into a microcontroller's sockets, as the strands spread apart and \(\qquad\) . This makes it annoying for
\(\qquad\) . However, it is very \(\qquad\) and it won't
\(\qquad\) if it is bent a lot.

\section*{Exercise 4:}
```

- common - contrasting - reliable - stable
- conductor \bullet electrode \bullet resistant \bullet standard

```

The most \(\qquad\) material used in home wiring is copper. This metal is usually chosen because it is not only great as a/an \(\qquad\) but is also easy to shape.

Copper is also \(\qquad\) to corrosion, heat, and other extreme elements, which makes it a/an \(\qquad\) choice when used in everything from cellphones to telecommunication wiring.

\section*{Switches}

So many switches, so little time.
Match the names of the switches with their picture. Then draw a line between the switch and its description.
\begin{tabular}{lll}
\(\bullet\) Pushbutton Switch & - Rocker Switch & - Tactile Switch • Toggle Switch \\
- Read Switch & • Rotary Switch & - Tilt Switch
\end{tabular}

\section*{Name}
1. \(\qquad\)
2. \(\qquad\)
3. \(\qquad\)
4. \(\qquad\)
5. \(\qquad\)
6.

\section*{Appearance}

\(\qquad\)
7. \(\qquad\)

\section*{Description}
a) activated when you push down on it
b) toggles between different configurations of multiple inputs and outputs
c) connection is made depending on angle of the switch
d) just a small pushbutton switch that gets soldered directly to a circuit board
e) lever moved back and forth to activate the switch
f) lever pivots to activate the switch
g) switch that is activated by a magnet

\section*{Resistors}

Resistors come in many different shapes and sizes. Vive la résistance!
1. One purpose of a resistor is to resist the _ _ of current.
a) fleece
b) flow
c) movement
d) run
e) stream
2. Another \(\qquad\) is to regulate the voltage in a circuit.
a) function
b) job
c) mission
d) operation
e) task
3. You measure the __ of resistance that a resistor offers is in Ohms.
a) amount
b) parts
c) sum
d) total
e) volume
4. Most resistors have colored \(\qquad\) on the outside.
a) bands
b) bars
c) hoops
d) lines
e) stripes
5. This code will tell you the __ of its resistance.
a) measure
b) rate
c) significance
d) value
e) worth
6. You can use the resistor color codes or a multi-meter to \(\qquad\) its resistance.
a) analyze
b) calculate
c) control
d) decide
e) determine
7. The last color refers to the _ of the resistor.
a) accuracy
b) error margin
c) exactness
d) precision
e) tolerance

\section*{Capacitors}

Remember, capacitors and condensators are NOT the same thing!
1. A capacitor is like a \(\qquad\) .
a) accumulator
b) battery
c) \(\begin{aligned} & \text { charge } \\ & \text { loader }\end{aligned}\)
d) current
e) rechargeable battery
2. A capacitors \(\qquad\) electricity.
a) collects
b) loads
c) provides
d) saves
e) stores
3. It then __ this electricity back into the circuit ...
a) decharges
b) discharges
c) excharges
d) subcharges
e) uncharges
4. ... when there is a __ in voltage.
a) drop
b) lower
c) reduction
d) shrinkage
e) small
5. The value is measured in the \(F\) (Farad), nano Farad (\(n F\)) or pico Farad (pF) _ _
a) range
b) scale
c) scope
d) value
e) width
6. Electrolytic capacitors are __.
a) dielectric
b) insulated
c) polarized
d) reverse
e) static biased

> Resistance is not futile \(\Omega=\mathrm{V} / \mathrm{l}\)
> It's voltage divided by current

\section*{More Switches}

A switch is probably the most commonly used component in everyday life. You use a switch from the moment you turn on the light to brush your teeth in the morning and until you turn off the lights to go to bed at night.
1. A switch consists of two (or more) __terminals.
a) carrying
b) conductive
c) insolated
d) isolated
e) passing
2. These terminals can be connected or \(\qquad\) with a mechanism (such as a lever or button).
a) disconnected
b) inconnected
c) plugged
d) unconnected
e) unplugged
out
3. When a switch is in an open position, there is a _ in the circuit.
a) brake
b) break
c) gap
d) halt
e) pause
4. A \(\qquad\) switch, on the other hand, allows current to flow through the circuit.
a) closed
b) completed
c) passable
d) shut
e) sufficient
5. So, the basic function of a switch is to __ electric current by turning a circuit on or off.
a) break
b) disrupt
c) disturb
d) interfere
e) interrupt
6. Switches can come in many __ such as pushbutton, rocker, momentary and others.
a) forms
c) places
e) styles
b) methods
d) shapes
f) systems
7. A toggle switch has a little _ that is toggled back and forth to activate the switch.
a) hebel
c) lever
e) point
b) knob
d) pin
f) stick
8. By flicking the lever back and forth, you can __ or break one or more connections.
a) create
c) make
e) produce
b) do
d) manufacture
f) realize
9. The standard light switch is just a specialized toggle switch meant to handle _ current and voltage.
a) amplified
c) higher
e) more
b) greater
d) increased
f) super

Rocker
Switch

10. A rocker switch is very _ to a toggle switch.
a) like
b) likely
c) same
d) similar
e) similarly
11. They are commonly used as power switches and are sometimes \(\qquad\) .
a) electric
b) illuminated
c) lighted up
d) lit up
e) powered

\section*{10 - Reading Data Sheets (LM555 timer)}

Download the pdf from moodle.```

